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Abstract

In this paper we are concerned with the study of spectral properties of the se-
quence of matrices {A4,(a)} coming from the discretization, using centered finite
differences of minimal order, of elliptic (or semielliptic) differential operators L(a, u)
of the form

& (@) du() = f(») onQ=(0,1),
Dirichlet B.C. on 812,

(1)

where the nonnegative, bounded coefficient function a(z) of the differential oper-
ator may have some isolated zeros in = QU 8. More precisely, we state and
prove the explicit form of the inverse of {An(a)} and some formulas concerning the
relations between the orders of zeros of a(z) and the asymptotic behavior of the
minimal eigenvalue (condition number) of the related matrices. As a conclusion, and
in connection with our theoretical findings, first we extend the analysis to higher
order (semi-elliptic) differential operators, and then we present various numerical
experiments, showing that similar results must hold true in 2D as well.

Key words: Finite Differences, Toeplitz matrices, Boundary Value Problems,
Spectral Distribution.
1991 MSC: 65N22, 65F10, 15A12.

Email addresses: dnoutsos@uei.gr (D. Noutsos), stefano.serrac
@uninsubria.it (S. Serra Capizzano), pvassalQaueb.gr (P. Vassalos).
1 This research was co-funded by the European Union - European Social Fund
(ESF) & National Sources, in the framework of the program “Pythagoras I” of the

Preprint submitted to Elsevier Science 22 June 2007



1 Introduction

The numerical solution of elliptic 1D and 2D Boundary Value Problems (BVPs)
is a classical topic arising from a wide range of applications such as elastic-
ity problems, nuclear and petroleum engineering etc. [31]. In these contexts,
the coefficient function can be continuous or discontinuous, but its positivity
guarantees the ellipticity of the continuous problem. On the other hand, for
the calculation of special functions or for applications to mathematical biology
and mathematical finance, the strict ellipticity is lost and indeed the function
may have isolated zeros generally located at the boundary 95 of the definition
domain (see [16,32,1] and references therein).

Since the arising linear systems are of large size, fast and efficient resolution
methods are always welcome and, for stability reasons, iterative techniques
have to be preferred. However, in order to devise efficient and accurate itera-
tive procedures, crucial spectral properties of {A,(a)} must be understood. In
particular, we are interested in spectral localization results and especially in
the asymptotic behavior of the extreme eigenvalues (which implies the knowl-
edge of the asymptotical conditioning). Furthermore, the characterization and
understanding of the subspace where the ill-conditioning occurs would be also
useful, at least in a certain approximate sense. In fact the latter information
represents a theoretical basis for the construction of effective preconditioners
for classical and Krylov based iterative methods or in designing good prolon-
gation/restriction operators for multigrid methods (see [15,30] and references
therein). In the specific case of elliptic and semi-elliptic non-necessarily sym-
metric BVPs and positive definite ill-conditioned non-necessarily Hermitian
Toeplitz sequences, this approach has been quite successful, both in sequen-
tial and parallel models of computation (see [11,12,21,27,24,26,4])

In this paper, we study the asymptotic conditioning with special attention to
the minimal eigenvalue, since it is easy to prove that the maximal eigenvalue
is bounded by a pure constant (see e.g. [10,25]). From the viewpoint of the
mathematical tools, we widely use three notions of positivity: component-
wise positivity (so that the Perron-Frobenius theory [31] can be invoked),
positive definiteness (so that the evaluation of the spectral norm, induced by
the Euclidean vector norm, is reduced to an eigenvalue analysis i.e. to study
of the spectral radius), and operator positivity (so that powerful equivalence
results can be applied, see [23]).

For problem (1) and for strictly positive coefficient function a(z), in [10] it has
been proved that the Euclidean condition number of A,(a) grows as n® For
the degenerate case of a(x) with some isolated zeros, in [21], the second author
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argues that the condition number of the arising sequence {A, }, is affected by
two factors (see also [25] and Subsection 2.2): the order of the differential
operator which causes a growth of order n? (for second order problems) and
the order « of the unique zero of the coefficient a(z) which gives a contribution
of order n®.

The main goal of this paper is to give an explicit formula for the inverse of
A, and an asymptotical study of its condition number, for every nonnegative
bounded function a(z), not necessarily regular (see the beginning of Section
3 for the precise hypotheses), and with a unique zero: in particular, we show
that the conditioning grows as n™*<{*2} up at most to the factor log(n) only
in the case where o = 2.

The analysis is then extended to the case of several zeros and to the case of
higher order operators: more specifically, when more than one zero is involved
the behavior of the conditioning becomes less regular and resonance effects
appear, increasing the order of the conditioning; on the other hand, for 2kth
order BVPs, & > 1, and with a unique zero of order « in the nonnegative coef-
ficient, the quantity n™{®2} is simply (and naturally) replaced by n™a*{®2¢},
Finally, even though we focus our attention on 1D problems, we should stress
that an interesting side-effect of this paper is to provide a theoretical frame-
work which can be exploited to cover the less explored and highly interesting
multidimensional case.

The paper is organized as follows: in Section 2 we set the problem in more
detail, we set notations, and we report in a organized way some more or
less known results from the relevant literature; Section 3 is devoted to give
the explicit form for the inverse of the matrix A,, a fundamental tool for
our derivations, while, in Section 4, we determine the asymptotic behavior of
the spectral radius of A!, for the second order problem in (1). Section 5 is
addressed to the extension of our findings in the case of arbitrary order elliptic
BVPs. Furthermore, in Section 6 we discuss the extension of our main theorem
in 2D, something which is ascertained numerically in Section 7, where several
1D and 2D numerical experiments are presented and discussed. Section 8 is
finally devoted to conclusions and perspectives.

2 Definition of the problem, notations, and preliminary results

Let us consider the second order BVP (1) and its approximation by using
centered finite differences, of minimal bandwidth, of precision order two, and
of stepsize A = (n + 1)~! on the grid-points zg = 0,21, Z2,...,%Tn, Tns1 = 1.

t
If z; denotes L t € [0,n+ 1], a; = a(z:), f = f(z+), and u; represents
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an approximation of u(-) at x;, then the considered numerical scheme leads to
the following set of equations

) .
—ai_%ui_l + (G’-i_% +ai+%)ui - ai+%ui+1 =h fi, 1= 1,2, vy N

Then, by collecting the above formulae and by taking into account the bound-
ary conditions, we arrive to n xn linear system whose coeflicient matrix A, (a)
shows the form

a1 +as —as
2 2 2
—a3z a3z +as —as
2 3 3 2
—as ".
2 (2)
= 1
n—3
L “a'n.—% a‘n—% + a’n+%J

Let T,, = An(1) be the Toeplitz matrix (i.e. constant along diagonals) dis-
cretizing problem (1) with a = 1, that is the matrix in (2) with @ = 1. The
matrices A, (a) can be expressed as

n+1

Ap(a) = Zl ai—1/2@n (1), (3)

where the matrices (i) are symmetric nonnegative definite dyads given by

Bors B oo O

and Qn(1) = eref, Qn(n + 1) = e,el, with e;, 5 = 1,...,n, representing the
jth column of the identity matrix.

Therefore the matrix
n+1

I, = Z Qn(ijs (4)
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is the sum of all the dyads @,(7) and A,(a) is a weighted sum of the same
dyads according to the weights a;_1/2, 7 =1,2,...,n+ 1. Moreover each dyad
has a “local structure” with respect to the canonical basis of R™"*™ so that each
Welght Q;—1/2 contributes in the matrix An(a) to Er,;,_]_,z'.ﬁl, E?l,i—l; Ei—l,i: Ei,i
where E,; = e,e] . Furthermore, this notion of “locality” is geometrical as
well, since vectors of the canonical basis that are close (es and e; are close if
|s —t|/n = o(1)) correspond to dyads

Qn(s - 1); Qﬂ(s)) Qn(t - 1)) Qn(t)

such that the related weights come from close points in the interval [0, 1].
Therefore we can say that the matrices {A,(a)}» have a local decomposition
with respect to the Toeplitz matrices {7, = A,(1)},: this locality principle
is important for obtaining global distribution results for the spectra of the
related matrix sequences (see e.g. [29,22]). However, again thanks to (3) and
to the nonnegative definiteness of the basic dyads @, (), an other important
aspect is that A,(-), regarded as an operator from a suitable function space &
into R"*", is linear and positive i.e. A,(aa+0b) = aAn(a)+8AL(), o, B € R,
a,b € § and A, (a) is nonnegative definite if a is nonnegative, as a function in S
(see [23,28] for a general discussion and several results on matrix-valued linear
positive operators). In Subsection 2.2 , we will use (3), (4), and this notion

of operator positivity for obtaining preliminary results on the eigenvalues of
Ap(a).

Finally we should emphasize that the latter dyadic decompositions have a
much broader interest and, in actuality, they apply to general differential op-
erators approximated by general finite differences (see [25, Theorem 4.1] and
also Lemma 2.1, Corollary 3.3, and Theorem 3.5 in the same paper) and by
finite elements (see Sections 3 and 4 in [3]).

2.1 Notations

We introduce symbols that we will use throughout the paper. Let us consider
two nonnegative functions a(-) and 3(-) defined over a domain D with accu-
mulation point Z (if D = N then Z = oo, if D = [0,1]¢, d = 1,2, then Z can
be any point of D). We write

o o) = O(B(+)) if and only if there exists a pure positive constant K such
that a(z) < K3(z), for every (or for almost every) z € D (here and in the
following for pure or universal constant we mean a quantity not depending
on the variable z € D);

e o) = Q(B(-)) if and only if there exists a pure positive constant K such
that a(z) > K3(z), for every (or for almost every) z € D;
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o af-) = o(B()) if and only if a(-) = O(4(:)) and lim a(z)/B(z) = 0 with Z
given accumulation point of D which will be clear from the context;

o af-) ~ B(-)ifand only if a(-) = O(8(-)) and B(-) = O(a(-)) (or, equivalently,
if and only if a(-) = O(G(-)) and a(-) = Q(B(\));

o o)~ () if and only if a(-) ~ (') and lim,_,; a(z)/B(z) = 1 with Z given
accumulation point of D (the latter can be rewritten as a(z) = 8(z)(1+0(1))
with 1 + o(1) uniformly positive in D).

2.2  Preliminary results

In the following, with respect to problem (1) and hence with respect to the ma-
trix structure in (2), we assume that the functional coefficient a(z) is bounded,
piece-wise continuous, nonnegative, and with a unique zero at 0 of order « i.e.
a(z) ~ z* on D =[0,1].

Since A, (-) can be regarded as a matrix-valued linear positive operator, it is
clear that it is also monotone (see [23]) that is A,(b) > A,(a) if b > a where,
as usual, the ordering is the partial ordering in the space of symmetric real
matrices and that of the function space &, respectively. Therefore, since in
our context the coefficient a(z) is nonnegative and bounded, it follows that
An(a) < llalleAn(l) = ||a]|wTn. From the latter, from the monotonicity of
the eigenvalues (i.e. A < B implies A;(A) < A\;(B), for every pair of n x
n Hermitian matrices and for every index j = 1,2,...,n, where A\ (X) <
Ao(X) < -+ € M(X), X € {A, B}, see [6]) and from the known expression of
the eigenvalues of 7},, we deduce that

Anin(4n) < [Ja]s4 sin? ( 2, )

w5)

On the other hand, if a(z) has a unique zero at zero of order «, then the
minimal eigenvalue of A, = A,(a) tends to zero at least as n™® (see also
(21, Proof of Theorem 4.1]). In fact, from (2) and from the Courant-Fisher
characterization (see e.g. [6]), we have

T
e; Ane; i
)\min(An) = 8?61 = GJ% + G.% - M (6)
Therefore the latter bounds imply
Amin(An) £ Cn~ max{ag}: (7)

with € universal constant independent of n (indeed depending only on the co-
efficient a(z), see (6)). Conversely, by exploiting again the monotonicity of the
operator A,(-) and of the eigenvalues, and by using the dyadic decomposition
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in (3), it follows that

Amin(lqzn.) > min ai_l/g)\min(Tn) ~ n_(a+2)' (8)

T 1<i<n+l

Here we are interested in filling the gap between (7) and (8) and in fact, in Sec-
tion 4, we will prove via Perron-Frobenius tools (see e.g. [31]) that the order of
the true behavior of the minimal eigenvalue is described by n=™{®2} with,
at most, an additional factor log(n) in the case where o = 2: that factor could
be motivated as a kind of resonance typical of finite differences in presence
of multiple zeros in the characteristic polynomial. The latter statement has
also important implications concerning eigenvectors: indeed the two sources
of ill-conditioning, the low frequencies coming from the constant coefficient
Laplacian, and the space spanned by few canonical vectors related to the po-
sition of the zero of a(z), do not interfere. There is only a superposition effect
so that the size of the degenerating subspace (i.e. that related to small eigen-
values) becomes larger, but the order of ill-conditioning is not worse than that
of the two factors separately. Therefore, both for designing multigrid methods
or preconditioners, we can treat the two ill-conditioned spaces separately in
a multi-iterative sense [20], as already done e.g. in [21] by considering a mul-
tiplicative diagonal plus Toeplitz preconditioner: more precisely, the diagonal
part takes care of the ill-conditioning induced by the zero of a(x) and the
Toeplitz part takes care of that induced by the Laplacian (a similar idea is
adapted in [26] in a multigrid setting). Finally we just mention that other
results of this type can be found in [21, Theorem 4.1] and [25, Corollary 4.1
and the third item of Theorem 4.3].

3 Explicit form for the inverse of the matrix A,

Let us consider the second order BVP (1) discretized as described in Section 2.
We assume that the functional coefficient a(z) is bounded, piece-wise contin-
uous, nonnegative, and with a unique zero at 0 of order « i.e. a(xz) ~ z¢
on D = [0,1]. The matrix coming from the considered approximation is
A, = A,(a) as displayed in (2). In the quoted literature, we find several
contributions discussing the form of the inverse of a tridiagonal matrix, or
more generally, on the one of a band matrix. First in 1960, F. Gantmacher
and M. Krein [13] proved that the inverse of a symmetric nonsingular tridiag-
onal matrix is a Green matrix which is defined by the Hadamard product of
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a weak type D and a flipped weak type D matrices as follows:

Up by e U U1 V2 = Up UiV UV -0 ULUp

Uy Ug -+ U U2 V2 - Un UiV2 Ug¥s -« -+ UgUp
C:UOV: ) o) = . (g)

Uy Ug -+ Uy Un Un * - Un UrUn U2VUp "+ UpUp

Conversely, the same authors have proven that the inverse of a Green matrix
is a symmetric tridiagonal matrix. In 1970, M. Capovani [8] stated and derived
relations which give the entries of the inverse of a tridiagonal matrix in terms of
its entries and its subdeterminants. In the same paper he gave the form of the
inverse of some particular cases of tridiagonal and block tridiagonal matrices.
One year later the same author [9], extended the result of F. Gantmacher and
M. Krein [13] for nonsymmetric matrices. R. Bevilacqua and M. Capovani [5]
in 1976, gave structural properties to determine the coefficients of the inverse
of a (block) as a function of its (blocks) entries. In 1979, W. Barrett [2] proved
that a matrix R with Ry, ..., Ry_1,-1 # 0 has the triangle property if and
only if its inverse is a tridiagonal matrix: more in detail, a matrix R has
this useful property if Ri; = “%% foralli < k < j and alli > k > j. In
1987, P. Rézsa [19], using properties of Green’s matrices and of semi-separable
matrices, proposed an algorithm to determine the elements of the inverse of a
band matrix by solving some difference equations. Later in 1998, J. McDonald,
R. Nabben, M. Neumann, H. Schneider and M. Tsatsomeros [17] generalized
the result of F. Gantmacher and M. Krein [13] for nonsymmetric tridiagonal Z-
matrices and they proved properties for the inverse of a tridiagonal M-matrix.
They gave also properties for the inverse of such matrices in terms of special
structured matrices called cyclopses (see again [17] for a formal definition).
More recently, i.e. in 1999, R. Nabben [18] proved properties for the inverse
of tridiagonal M, positive definite and diagonally dominant matrices.

The matrix A, in (2) has most of the above “good” properties: it is an irre-
ducible nonsingular tridiagonal Z-matrix, an M-matrix, and also a symmetric
positive definite matrix. Hence, we can combine the above results for charac-
terizing its inverse. However, the matrix A, has an additional property that all
row sums are zeros except the first and the last one. Taking into account Corol-
lary 3.6 of [17] or Corollary 2.6 of [18], concerning properties of the inverse of
an M-matrix, and Corollary 2.7 of [18], concerning on properties of the inverse
of a positive definite matrix, we obtain that the numbers u;,v;, i = 1,2,...,n,
appearing in the Hadamard product (9), can be chosen to be positive and such

that - i i
B ue— .28, (10)

U1 Uz Un
In the sequel we will find an explicit form for the matrix A;! by using the
forms of A, and C'in (2) and (9), respectively and inequalities (10). We take
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the product A,C which should be the identity matrix 7.

For k < j, the inner product of the kth row of A, with the jth column of C
gives

0 = (AnC)is = v5 (—p_gtrcr + (@) + By 1)tk — Gy 1tk11)

= Uj (ak—%(uk = g )— ak+%(uk+1 — uk)) .

We observe that this equality holds true if we chose, up to a constant factor,

One solution of this difference equation, up to a constant factor, is

k
1
w=y —, k=1,2,3,...,n
i=1 %i-1
For k = 1 we have
1 1 1
0= (ArC)1; = v; ((a% +ag)——ay (EI + a))
2 2 5

which holds true.
For k > j, the associated inner products give
0= (AC)ij = 15 (—ax_ 10kt + (G p + By 1 )JVk — Oy 1Vk11)
= Uy (*ak—é(vk—l — vg) + U’k+§(”k — Uk+1)) .

We observe also here that we can chose, up to a constant factor,

V-1 — Vi = y k=2,3,...,n.

One solution of this difference equation, up to a constant factor, is

n

1
Uk::z ) k:1:273:"'7n'

i=k %i+3

For k = n we have

1 1 1
(= (AnC)nj = u; (—a.n_% ( I ) + (an_% -l-an_,_%) )

an_% Al
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which holds true. We define by s; and by s the sums 3™, —1— and 37 %,

i=k a4 =0 q,
ity ity
respectively. It is obvious that with the above choices, up to a constant factor,
we have v, = sg, ur = s —s,, k =1,2,...,n. We observe also that the

sequence vy strictly decreases while wy strictly increases, so the inequalities
(10) are satisfied.

It remains to check the inner products for k& = j.

(AnCpr = — 1 U1V + (@1 + ak+%)ukvk — Oy LURV41
= —a;_1(s — sk-1)s + (a1 +ag1)(s — s)sk — oy 1 (8 = Sk) Skt
= 0.1 (Sk—1 — k)5 + Opyl (% — Sk41)(s — Sk)

= S+ (s—ay) =8 k=23, .. 0—-1,

(AnC)n = (a1 +az)uvn — aguivy = ay(s — s1)s1 + az(s1 — s2)(s — 51)

=38+ (s—5)=s,

(A T = —Gp_1Un—1Vp + (an_% + an+%)unvn
= ap_1(Sn—1 — Sn)Sn + am%(s — 81)8n = 8 + (8 — 8,) = 5.

As a consequence A,C = sI. To eliminate s we have to chose the constant
factors of the matrices U and V', in such a way that the relative product equals
%. Then, the inverse of A, is obtained by dividing C' by s which gives us the
explicit form:

s1(s—s1) s2(s—s1) s3(s—s1) . sn(s—s1)
s s s s

s2(s—s1) sa(s—s2) sa(s—sa2)  sn(s—s2)
s s s s

A7 — | sa(s—s1) sals—s2) sa(s—s3a) . . sn(s—sa) . (11)

L s s B s

sn(s—s1) sn(s—s2) sn(s—s3) ... Snls—sna)

L . s 5 s J

It follows another proof to obtain the explicit form of A-! independent of the
previous approach. It is not related to the theory appearing in the referred
literature, but only depends on the form (2) of A, and on a tricky use of the
Sherman-Morrison formula.

‘We consider the matrix

A, = tridiag[—1 1 Oldiaglaz as O 1ltridiagl0 1 —1]
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i.e.

1 as
2
-1 1 as 1 —-1.--- 0
Av=10 -11 a 1
-1
0o 0 ---~11 Gy 1
[ a3 —a3 |
2 2
—az a3 +as —as
2 2 2 2
-
- 2
=G 1
L man*% a’nu-% + a‘n+%_

We observe that the matrices A, and A, differ only in position (1,1), where
the term a 1 does not appear in the matrix A,. By (3), it follows that

e1 being the first column of the identity matrix. Our aim is to find an explicit
form of the inverse of A, and hence, from the above relation, we write

A = (At agere]) ™ = (T + oy A end]) AT (12)

1
2

As a consequence, in order to determine a formula for the inverse of A,, it
suffices to compute the inverses of the two factors appearing in (12). For that
purpose, we start our analysis by studying the inverse of A, (in this respect, we
should acknowledge that the expression of A.! can be found, for the specific
case of a = 1, in [7, Chapter 4, Exercise 8, p. 108]).

From the above factorization of A,, we find

A7l = (tridiag[0 1 —1])_1(diag[a% a an+%])“1(tridiag[—l 1 0]

5
2
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that is

- 1L 1r 1
111-.-1]| |2 1
2
11---1 as 11
3
A = kD
- 1 L 11 1
Z
1
1 1 11- 11
L < | wrk.d - N
[ 1 1 | :
a3 as a
3 %3 % ney | |1
11 1
g dg Ot 11
— o :
= — 11 1
2
1
an+%‘
1 11--- 11
L n+%_ ) )
[ _1 n _1 n 1]
1=1 0,1 =2 @51 1=3 a, 1 ,1"_‘_%
g ool ogm 1 e 4 .. _1
i=2 ai+% i=2 QH_% =3 a‘.+% an+%
o ) 1 En a5 Zn 1 1
=3 a,i+% f=3 ai+% =3 G‘i-i—i- an+%
1 1 1
L an+31_,- ant% n+é an+% .
§1 82 83 ' 8Sp
S9 83 S3 '+ 8p
= | 83 83 83 '+ Sy
Sn Sn Sp - Sn

The matrix a%ﬁ; eje] has nonzero elements only in the first column whose
expression is given by a 18k, k =1,2,...,n. Therefore the analysis of A;! is
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equivalently transformed into the inversion of the matrix

A—1 T
I+a%An ee = Q%SS 1

where the entry in position (1, 1) has been obtained by l4ays; = a1 (iJrsl) =

3
aLs. It is well-known that the inverse of the above matrix maintains the same

structure (since it is a slight variation of an elementary Gauss matrix, see
[14]), and it is easily obtained as

11
al s
2
—s2q
8
Tl Nl _
(I+a14; ere))” = -2 ]
_sn 1
L g =t
In conclusion
%L S]. 52 83 PR Sn
=1 83 Sp S3 +++ 8p
=1 s
A= e S3 $3 83+ Sp
e 1| | 85 Bn 8 254 85

where we have replaced % by 8 — 5;. The above matrix product leads to the

2
following results: the entries of the first row of A7' are

The entries (A

(A, =888 o

iy, 1=2,3,...,nfor ¢ > j, are given by
o 8:5; si(s — s;
(Anl)ij:— JJFSi:%
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while, for ¢ < j, we find

(A1) = ot 1+ 8; = msj(s — Si).
S

Consequently a compact formula for the inverse of the matrix A, is given by
the explicit form (11)

S

4 The spectral radius of A-!

For determining the asymptotic behavior of the condition number of the ma-
trix A,, we have to estimate the smallest eigenvalue since its maximal eigen-
value is bounded by 4||a||c, since A, = A,(a) < ||a||Ty by operator positivity
of An(-) (see Subsection 2.2) and since Amax(T) < 4 by Gershgorin’s theorem
(see e.g. [6,31]). Instead of this, we study the spectral radius of the inverse
of A,. The matrix A;! is a symmetric positive definite matrix with positive
elements. Thus we make use of the Perron Frobenius theory (see e.g. [31])
for positive (nonnegative) matrices. Our analysis is obtained via a series of
preliminary results.

Lemma 4.1. Let {A,}n, An € R™™, be a sequence of symmetric positive
definite, irreducible, and nonnegative matrices. If there exists a number g(n)
of rows such that their row sums are greater than or equal to f(n), then the
order of the spectral radius p(A,) is greater than or equal to 3(")1{&, so that

| p(An.) =0 (M) :

L

‘ Proof. Without loss of generality, we suppose that the row sums are in decreas-
ing order (otherwise this can be obtained by a proper permutation similarity
transformation). By using the Courant-Fisher characterization [6], we find

pA)= s 2"z > 2 (n) Ane(r)

zeR® ||z||=1
3

1 = S"z 1 g(n) - 1

ne (n) =5 = S’L ) ng(n)f(n)a
5,

where the normalized vector ~\}—-ﬁe(n) has replaced z, with e(n) being the vector

of all ones, and where we have denoted by S; the ith row sum of the matrix
L a
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We introduce the following definition.

Definition 4.1. A symmetric, positive definite, trreducible, and nonnegative
matric A € R™™", given in decreasing order of row Sums 1§ dominated by the
first g(n) x g(n) block if S; ~ Sg,, where Sp, = Zg 1 ai; and the symbol ~

that defined in Subsection 2.1.

Lemma 4.2. Let {Ay}n, Ayn € R™™, be a sequence of symmetric positive
definite, nonnegative matrices, which are dominated by their first g(n) x g(n)
block. If f(n) is the smallest row sum of the first g(n) rows, then the order of
the spectral radius p(Ay) is greater than or equal to f(n), so that

p(An) = Q(f(n)).

Proof. The proof follows the same procedure as of in Lemma 4.1. For that we

take the normalized vector me(g (n)), with e(g(n)) being the vector of ones

in the first g(n) entries and zeros otherwise. Thus

p(An)

Il

SUPgern, =1 £ AnT
> s’ (9(n)Ane(g(n))
5,
5

Sg(n)

= o TED 5 2 4040 = f(n)

and the proof is complete. O

Lemma 4.3. Let {A,}n, An € R™™, be a sequence of symmetric positive
definite, nonnegative matrices, which are dominated by their first g(n) x g(n)
block. If all the first g(n) rows are of the same order of f(n), then the spectral
radius p(A,) is ezactly of order f(n).

Proof. From Lemma 4.2 we deduce p(A,) = Q(f(n)). On the other hand,
from the Perron-Frobenius theory, we obtain that p(A4,) < max;S;. As a
consequence, p(A,) = O(f(n)) and the proof is complete. d

Now, we are ready to state and prove the main theorem of this section con-
cerning the relation between the order of the zero of the coefficient function
a(z) and the condition number of the matrix A,.

Theorem 4.4. Let {A}n, A, € R"™™, be the sequence of matrices derived
from the discretization of the Semielliptic Differential Equation (1) with the
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bounded coefficient function a(z) having a unique root at 0 of order o i.e.
a(z) ~ x* on D = [0,1]. Then, for the spectral condition number k(A,) of the
matriz A, which coincides in order with the spectral radius of A7, we find

n ?

n?, 0<ax<?,
K(An) ~ p(A71) ~ ¢ O(n*log(n)) N 2(n%), a=2, (13)
n?, a> 2.

Proof. The part £(A,) ~ p(A;*!) simply follows from the relations ||AZY|| =
P4, 1dnll = p(A) < dlall e, snd Jim p(A,) = 4lla]e, where the postive
definiteness of A, and the distribution results in [29] come into the play.

The fact that a(z) ~ z® means that there exist positive constants ¢ and C far
from zero and infinity such that, uniformly with respect to = € [0, 1], we have

ez® < alz) < Gz,
From the positivity of the operator A,(-) we obtain
cAn(z%) < Anla(z)) < CAn(z%)

where the meaning of the inequalities is in the sense of the partial ordering in
the real space of Hermitian (real symmetric) matrices. The latter implies

eds( A le®) < M(A(alz)]] = O%ld (2%)), 4=12,..,m

and, in particular, this holds also for the minimal eigenvalue, which means
that the minimal eigenvalue of A, (z®) and the minimal eigenvalue of A, (a(z))
coincide in order of magnitude. As a consequence, it is enough to reduce our
study to the matrix A,(z%), instead of A,(a(z)).

For the remaining part, since the matrix A_?! is a symmetric positive definite
matrix with positive elements, we will prove our assertion, by estimafing the
row sums of the matrix A;! with functional coefficient 22, given in its explicit
form (11), and by using the previous lemmas. For this we study the following
cases:

Case 1: a = 0.

The result related to this case is well-known [10], since the matrix T, coincides
exactly with tridiag[—1 2 — 1], i.e. the Laplace matrix with eigenvalues

4 sin® (ﬁ ,j=1,...,n Hence
n 5

K(An) ~ p(AZ") ~ . (14)
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We remark here that this result could be obtained also by following the rea-
soning we will use in the subsequent cases.

Case 2: 0 < a< 1.

We estimate the kth row sum Sy of A7

k n
So=23 55+ 2% > s, (15)
S =1 i=k+1

First we consider the quantity S;:

SzZ

F=i _?+"- Jj=t 7’1+1 7=t
NS R T |
(n+1)
i g( 2(n+ 1)) sl
Taking into account that we have uniformly discretized the interval [0, 1] in
n + 1 subintervals, we get that the value (2—?%)“& — is the (Lebesgue)

n+1? n+l
Therefore, the above sum is approximated by an integral as follows:

Sﬂ;x(n-l—l)fli z™ %z = ntl [xl'“]li L {1—( i )1—(]]. (16)

l—«o T l—a n-+1

measure of the rectangle with z-edges [, £t1] and y-edges [O, (2—%%)_&}

T
It is easily checked that the error of the above approximation is less than S; in

order of magnitude. If we substitute ¢ = 0 in relation (16), then we estimate
the quantity S as

1 n+1 1 n+1
~ 1/-%;: 1-a] = . 17
o (n—!—)uaz 7 l—a[m Jo e (17)
From (16) and (17) we find
n+l n+1 i\ (a+1)e e
S—8 = — 1- ( ) = e 18
Fl-a l1-a { il ] l—o (18)
By taking the sum of the coefficients in (16), we deduce
; l—a
Sl 2 Bl B~ Tl 2 (o)
- (n+1l{z—k) _ (n+1)2 fl 1 pl=agdy
_ (n+1l)(n—k) (n+1 [1 . (w)2*a} (19)
- 11— (l a)(2—a) n+1
_ (n+1)? + (n+1)® (k+1)2~>  (n+1)(k+1)
T 2—a (1—a)(2—a) (1-e) ?
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; Lespy
where we used Y0, ., (}Iﬁ) = A f,%—ii z'~*dz. Similarly, by taking the

sum of the coefficients in (18), we find

k L R e
s (S —8) =~ B = g zl-odx

l—-o 1=1 11— 0
__ (n+1)? (_k_)Q'—ﬁ _ (nt1)ek2-e (20)
T (1—a)(2—a) \n+1 ~ T=a)(z—a)’

. &
where % (n—i—l) —1 ~ Ji «'7%dz. By replacing the explicit formulae
(16), (17), (18), (19), and (20) in relation (15), we arrive to estimate Sy that

is S'k _ [1 _ (L)l_a] £n+12“k2“°’

n+1 (1—&)(2—&) (21)
E )T [()? L (e ()27 (nb1)(k41)
P Bt A

We plainly observe that S), does not exceed, in order of magnitude, the value
max{(n +1)*k*"%, (n+ 1)1*2k1~* (n+1)22~1k3-22} In any case this maxi-
mum is of order of n?. On the other hand, by studying (21) for 2+1 < k < 22,
we obtain that

B, conl® g+1gk§%”. (22)
We consider now the matrix Bz, the § x 7 block of A;' formed by deleting

the first and the last % rows and columns. We denote by S B, the kth row sum

of the matrix Bz, where the index k ranges from £ + 1 to 2*. Taking into

account (15), we infer

an
" Sp & S-S5 &
Sn.=F 3 (S-8)+ = 0 5 (23)
i=2+1 i=k+1

By making analogous calculations, as in the estimation of Sy, we find

~— 11— n+1)e k2-a_(ny2-a
SBk:[lﬁ(i) }( i Yl 3 )

1n_+1 - (1—[1)(2-@1 o (24)
4 (TL) @ [(n+13(_—;——k) n (n+1) ((k(-‘l-i}a)(Z:c{x?+l) )]
It is easy to understand that (24) implies
Sp, ~n?, g+1§k§1. (25)

We apply now a permutation transformation to the matrix A-! in such a way

that its block Bz will appear in the first 3 x § rows and columns. Then, the

permuted matrix is dominated to the first § x § block, with all the first 5 row
sums being of order n?. In this case Lemma 4.3 is applied to obtain relation
(14) that is

K(An) ~ p(AZY) ~ 2.
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Case 3: a = 1.

We follow the same steps as in the previous case:

L L
5= jz:%aﬁ% = 2 +1
xj(nJrl)/l1 1cﬁ’x—(n—l—l)log( _:1), (26)
S=2n+1)+ S =n+1)(2+1log(n+1)); (27)
S — 5= n+1)(2+log(n+l))—(n+1)1og(n+1)
=(n+1)(2 +log(7)). (28)

Now by substituting (26), (27), (28) in relation (15), we infer the following
estimate for Sy:

B, (n+1) log oL &
Sk ~ mrnEregmry it (1 + 1) (2 +log

(n+1)(2+log(k))
(nil)(w(log(gn;n) S pea(n+ 1) log (2%
(n+1) log
= 2+log(n+1) (2]{1 + Z =1 log( ))

(nt W) ((n — k) log(n + 1) — Tipan log(d)) -

7))
?) (29)

+

+

On the other hand

k k
3 log(i) & / log(z)dz = klog(k) — k + 1
i=1 1
and

Z log(7) /n log(z)dz = nlog(n) —n — klog(k) + k + 1.
i=k+1

By replacing the latter terms in (29), we obtain

= (n+1) log{ 2L
Sk = 2+log(gn(+f) )(k +k log( ) 1)

(n+1)(2+log(k _ n+l N (30)
+ (e HEW) (1 1og (24L) — klog (%) +n—k—1),

and hence the quantity S, does not exceed n? in order of magnitude. Fur-
fuhermore, by analyzing (30) for 2 +1 < k < 2 we obtain relation (22) that
is

- 3

Sy ~n2, +1gkgf.

|3
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As in the previous case, we consider the matrix Bz, the same 3 x § block of
A.', and we estimate the row sums Sp,, 2+1<k <2 je,

‘§Bk ~ ﬁ%—ﬂfﬁl—) (k — 7+ klog(k) — Zlog (ED

4 (ot tes(k) (3” k+ %"log (”’*1) - klog(”“))

2+log(n+1) 4

(31)

It is easily checked that (31) implies the same conclusion (25), as in the pre-
vious case. Applying again Lemma 4.3 as in (14), we find

K(An) ~ p(AZY) ~ n?.

Case 4: 1 <o < 2.

In analogy with the previous cases we estimate

B BT 1 n+1[/n+1\*!
! ~ Qg ik
5= Z( n+l)) (D) [, o a—l[( i ) J

J=1 n+1l
(32)
1 1
5':2"‘(n+1)°‘+5'1%(n+1)°‘[2a+ _1]—::1; (33)
o [na 1 1\

S-S (n+1) [2 +a_1(1—w—_1)], (34)

k1 O R (n:?u o g — gﬂ_ﬁ?‘_%_ﬂ
~ (ﬂ+1) f L (n+;£?;—k) (35)

n+1
= & |E&EA+ 1)+ +DE+1) - ﬁ?ﬂ(uz_%lL] :
T (S—8) = (n+ l)ak( 4L -
~ (n+ 1)k (20 + L) - S5 f T gl-agp (36)
= & o W) .
Substituting the explicit quantities (32), (33), (34), (35), and (36) in relation
(15), we deduce that

~ ntl [(ﬂ+1)"f 1 ] -
S~ metemrm] e (0 D% (27 + 2 - e

(n+1)* jl—o
a—1 =1

-1 u—l (37)
(n+1)2 294 24 (1- i1 )] { (1) (nd)(h1) (n+1)°“(k+1)2—“}
(:,.H_l)a[ga_i_ﬁ]_% (a—=1)(2—a) a—1 (a—1)(2—a)

A plain analysis of the main terms of (37) shows that the order of Sy, does not
exceed n?. Moreover, the study of (30) for 1Sk %T” leads to relation
(22), i.e

Sy, ~ n?, +15k,§%’”.

~|3
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We consider once again the matrix Bz. Then

S’,B N n.+1 [(M—l) —1](7::) |:(k - _) (2& ﬁ) B %‘j—__{j(g‘ll;}

k (n+1)2 [2&+ ;|24 (38)
(n+1)%[2%+ 5 (1—ka ])] (1) ( (32 +1)2-0—k2-%) ()3 —k)
(n+l)°‘[2°‘+ L]-24d (a-1)(2~a) a-1 :

The analysis of (38) gives the same conclusion as (25), and then, by Lemma
4.3, we obtain relation (14), i.e., K(4,) ~ p(A;1) ~ n2.

Case 5: o = 2.

As in the preceding cases we have:

.:i(%ﬂ)z (n—i—l)fli:t;_zda::(nnLl)(ﬂ:l—l) (39)

= \2(n+1

S=4(n+1)*+ 5 = (n+ 1)(5n+ 4); (40)
S—Si~=n+1)bBn+4)—(n+1) (n;}-l _1) = (n+1)? (5_%); (41)

S S~ (1) S (55) T = (R + 1)(n— k)

=~ (n+ 1) f%+1 iz — (n+ 1)(n — k) (42)
= (n+1)*log (’;ﬁ) (n+1)(n — k);
Tha(5 - 80 ~ 5(n+ D%k - (n+ )Tk ()
~ 5(n+ 1)%k — (n + 1)2f”+1 5ty (43)

n+l

= (n+1)?(5k —log(k + 1)).

For the estimation of Sy we employ (39), (40), (41), (42), and (43) in relation
(15):

S;; e (n +1)2 (5k — log(k + 1))
n+1)(5— n
4! *5;(+4 (n+1) ((n+ 1) log (22) - (n — ¥))
n+1)2 —
{5;24 [5+ Tk +5(n+1)log(n + 1)
— (5n + 4)log(k + 1) — % log(n + 1)].

A straightforward conclusion is that S) does not exceed n®log(n) in order of
magnitude. On the other hand, by exploiting (44) for 1 < k < m, where m is
a constant integer independent of n, we obtain

(44)

S ~ n*log(n), 1<k<m. (45)
By the Perron Frobenius theory on nonnegative matrices, we find

(A7") = O(n”log(n)). (46)
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We consider the m xm matrix B,,, which is the submatrix of A ! formed by the
first m rows and columns. The estimation of the row sums S B, 1<k <m,
leads to

S5, ~ 2(n+1)% (5k — log(k + 1))
+ @;%ﬁm 1) ((n+ 1) log (2£) — (m — k)) %
= ;I_itl [5(n 41 —m)+ =% + 5(n + 1) log(m + 1)
— (5bn+4)log(k + 1) — 3—;5"1 log(m +1)].
Since m and k are constant independent of n, it follows that
Sp, ~n?, 1<k<m. (48)
By the interlacing law we obtain p(A-!) > p(B,,) ~ n? and therefore
p(AT) = 0(n?). (49)

In conclusion, from (49) and (46), we deduce that

k(An) ~ p(A71) = O(n*log(n)) N 2(n?).

Case 6: a > 2.

It is easily seen that the estimation of the quantities S;, S, S — S; and

>iek41 Si is just the same as in Case 4, when dealing with relations (32), (33),

(34), and (35), respectively. The only modification we need is to estimate

the quantity S°F | S — S;, by exploiting an alternative approximation since
k

Jo ! z'-%dz diverges for a > 2. More in detail we have
(8 = 8) m (n+ 1% (27 4 2y ) - S5 oLy i
~ (n+1)% (20: ﬁ) (n+1) fn+1 pl=2dp (50)

o |1 1 - Grye—z
:(n+1) [;\,(2“4»&?*)—(?(%3::5 P

We estimate Sy, by replacing (32), (33), (34), (35), and (50) in relation (15):

S ~ 2 [(2) ] (n+ 1)@ [ic (22 + ) - —‘-—ﬁ-f‘“*"_l)"]

k ~ (ﬂ+1)a[2a+ﬁ]_2_ﬂ a:—l)(cx—Z) (51)
(n+1) [2"‘+—(1 )] [(n+1)“(k+1)2‘“ o (n+1)(k+1)]
et L~ | e D2 @2 a1

Again we deduce that S) grows in order as n® . Moreover, by studying (51) for
1 < k < k, where k is a constant independent of n, we ﬁnd that both terms
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of (51) are of order n®. Thus

S ~n®, 1<k<k. (52)
By considering the matrix By, the submatrix of A formed by the first & rows
and columns, in the formula of the kth row sum of Bj the first term of (51)
appears unchanged, while the changes appear only in the second term. Thus,

Sp, ~n® 1<k<k. (53)
Finally, by Lemma 4.3 we obtain
R(An) ~ p(AZY) ~ e, (54)

and the proof of the theorem is completed. O

5 The case of higher order BVPs

The results of Theorem 4.4 can be extended in a straightforward manner to
cover the case where the BVP is of order higher than 2, i.e., our equations are
of the form

{(—l)k%(a(x)i—kku(m))_f(z) on =0, k=23

homogeneous B.C. on 012,

where the function a(z) has a root at Zy € Q of order c. In analogy to the case
of second order operators, we approximate (55) on a uniform grid of stepsize
h = (n + 1)71, using centered finite differences of minimal precision order 2.
As a consequence we find 2k + 1 band n x n linear systems A,(a)z = b.

The generalization of Theorem 4.4 takes the following form:

Theorem 5.1. Let {A,}n, An € R™™, be the sequence of matrices derived
from the descritization of the Semielliptic Differential Equation (55) with the
bounded coefficient function a(x) having a unique root at 0 of order a i.e.
a(z) ~ z® on D = [0,1]. Then, for the spectral condition number k(A,) of
the matriz A, which coincides in order with the spectral radius of A;!, there
holds:

n?k. 0<a<?2k,
k2(An) ~ { O(n**log(n)) N Q(n%*), o=2k, (56)
ne, a > 2k.
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The proof follows exactly the same governing ideas as the proof of Theorem
4.4 but with the mathematical manipulation becoming more and more com-
plicated and tricky as the order of the BVP increases. The reason for that
concerns essentially the formulation of the explicit form for the inverse of the
coefficient matrix A,. In Section 7 we give many numerical examples regarding
the case of BVPs with order higher than two, with all of them fully confirming
the theoretical results given in Theorem 5.1.

Remark 5.1. The assumption for the coefficient function regarding the unique-
ness of its root cannot be relazed to “many isolated roots”. The reason, which
has been mentioned also in [25), is that in this case the condition number grows
in an unpredictable (nonmonotone) way as the dimension of the problem tends
to infinity: in reality, the matriz A, may happen to be also singular for certain
dimensions. More specifically, performing various numerical experiments (see
Tables 9, 10, and 11 for a partial account on our findings), we have observed
that:

o For k=1,2,3 there exists a(x) such that max{a;} < 2k and ky(An) ~ n**;
more precisely, ra(Ay) = Q(n?*+), for some & > 0;

o For k=1,2,3 there exists a(z) such that max{c;} = 2k and ky(4,) =
O(n*log(n)) N Q(n%*); more in detail, ka(Ay,) = Qn2* ), for some § > 0;

o For k=1,2,3 there emists a(z) such that max{a;} > 2k and ko(A,) =
nmedest - more precisely, ro(Ayn) = Q(nm@{@}+8)  for some § > 0.

In Section 7 we report some examples concerning this case, and the conclusion
is that the condition numbers grow faster, when compared with the bounds in
Theorem 4.4 and Theorem 5.1: the reason is a kind of interference between the
sources of ill-conditioning represented by the different zeros (for a nice contrast
with the case of a unique zero, see the discussion at the end of Subsection 2.2).

6 Remarks on the 2D case

We consider the 2D problem

o (a(x,y)%u) = (b(w, y)a%u) ~ f(zv) (57)

with Dirichlet boundary conditions. Using the well-known five points formula
and by ordering the unknowns in the classic manner, we arrive to the n? x n?
linear system

Aun® = b,

where A, is a symmetric positive definite block tridiagonal matrix, with the
diagonal blocks being tridiagonal matrices and the off diagonal blocks being
diagonal ones.
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As we have mentioned from the beginning of this paper, the main contribution
of this work will be to give a guideline and to establish a theoretical framework
for dealing with the more interesting 2D case, which is of great importance
from both, theoretical and practical point of view. A trivial but immediate
application of our estimation of the condition number to the 2D case, is the
circumstance where the coefficient functions are of separable variables. In ad-
dition, we perform various numerical experiments and it clearly emerges that
the results of Theorem 4.4, under suitable assumptions, can be analogously
extended to cover also the 2D case. The following definition is useful.
Definition 6.1. Let f(z,y) be a nonnegative bounded function having a zero
at (zg,y0). We say that the order of zero is o € (0, 00) if there exists a finite
number p of curves C;, © = 1,...,p, defined by l;(x,y) = 0, passing through
(o, v0) and regular in it such that f ~ f and

B =5 (Rl 4 el

i=1
where g has a zero at (xg,yo) of order at least 8 > «.

We are ready to state our conjecture concerning the relation of the condition
of A, and the order of the zeros of the coefficient functions:

Statement 6.1. Let us assume that the coefficient functions a(z,y), b(z,y)
have zeros (zo, W), (21, y1) of orders o, o, Tespectively. Then for the spectral
condition number ko(Ann) of the matriz An, there holds:

n2, 0 < min{a,, @} < 2;
mz(Ann) ~ O(n2 log(n)) n Q(nz)! nlil"l{O!a,, ab} =4,
nmin{aa,ab}, min{aa, Otb} > 2.

7 Numerical experiments

In this section we present several numerical tests concerning both 1D and 2D
BVPs. We will start by discussing experiments on univariate BVPs of order
2, 4, and 6, respectively.

The quantity which is of main interest in our context is the estimation of

AIl'lin (Azm) )
WL L N
. B2 (Amin (Az(m+1))

We observe that p,, reflects the decrement rate of the minimal eigenvalue of
the coeflicient matrix A,.
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For the second order BVP in (1) we have used as coefficient functions the
following test functions:

5
|2

ai(z) = |z — %{, ax(z) = (z — .3)% as(z) = ‘3: T

and the results are given in Tables 1, 2, and 3, respectively. Regarding the
fourth order BVP i.e. (55) with k = 2, we use the functions

2
1 : 4 5
a4(z) = |z ——=| , os(z) =sin(z)*, ag(z) = z°,
@) = (0= 5], asle) =sin@)’, auto)
with associated results in Tables 4, 5, and 6, while, for the sixth order BVP
i.e. (55) with k = 3, we have chosen as coefficient functions

ar(z) = sin(z)?, ag(z) =27,

with related results in Tables 7, and 8.

Obviously, in order to perform a meaningful test for our theoretical derivations,
the considered coefficient functions have different analytical behaviors, and
with roots of order less, equal or greater than the order of the differential
equation. In all cases, we ascertain numerically the theoretical findings in
Theorems 4.4 and 5.1.

Table 1
1D, ki= lwa(z) = ’I— —%|
m b) 6 7 8 9

Amin || 2263 x 1073 | 5483 x 107% | 1.324 x 1074 | 3.2x10~% | 7.76 x 10~°

Pm 2.045 2.05 2.048 2.044 2.04

m 10 11 12 13 14

Amin || 1.889 x 107% | 4.612 x 10~7 | 1.129 x 10~ 7 | 2.773 x 10~8 | 6.824 x 10~°

om 2.034 2.03 2.026 2.023

For the case where a(x) has multiple roots in [0, 1] things completely change
as reported in Remark 5.1. Tables 9, 10, and 11 show this “irregular” behavior
for the quantity p,,.

a) k=2 alz)=z%z— 3|3,
b) k=2 a(e) = (z — 35)%(z — &4
¢) k=1 alz)=(n—.5)%"

For the 2D case, we consider the following four examples:

a) a(z,y) = b(z,y) =z +y,
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Table 2

1D, k= Lafz) = (x —.3)>.

m 5 6 T 8 9
Amin || 3-251 x 107* | 9.608 x 1075 | 2.063 x 10~® | 4.882 x 10=¢ | 1.179 x 1078
Pm 1.759 2.92 2.079 2.050 1.898

m 10 11 12 13 14
Amia || B-168 % 10T | 7282 10~ | 1762 % 10~° | 4.318 % 10~% | 1.193 % 10~°
Prm 2.119 2.047 2.029 1.943

Table 3
1D, k = La(z) = (z — m/4)5.

m 5 6 7 8 9
Amin || 5.206 x 1075 | 9.278 x 1075 | 2.46 x 1078 | 3.296 x 10~ | 5.446 x 1078
Pm 2.488 1.915 2.9 2.597 2.549
m 10 11 i2 13 14
Amin || 9.305 x 1079 | 2.282 x 107° | 3.633 x 10719 | 6.529 x 107! | 1.193 x 10~ 1!
P 2.028 2.651 2.476 2.452

Table 4
1D; fo= Dgld = ‘x— \ﬁ| :
m 5 6 7 8 9 10 11 12 13
pm || 3.646 | 3.961 | 3.996 | 4.038 | 3.995 | 4.151 | 3.851 | 4.022 | 4.034
Table 5
1D, k=2 a(z) = sin(z)?.
m 5 6 T 8 9 10 11 12 13
pm || 4.208 | 4.189 | 4.161 | 4.135 | 4.113 | 4.094 | 4.078 | 4.066 | 4.056
Table 6
1D, k=2 afz) = .
m 5 6 7 8 9 10 11 12 |13
pm || 4911 | 4.951 | 4.974 | 4.987 | 4.993 | 4.997 | 4.998 | 4.999 | 5
b) a(z,y) = 2° +y*, b(z,y) = 2° +¢°,
c) a(z,y) = z* +y° b(z,y) = (z +y)

d) a(z,y) = [z —y, bz, y)=lz— 3P+ vy —

1
2

P,

The results in Tables 12, 13, 14, and 15 fully confirm the statements formulated
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Table 7

1D, &:=3 ulx) = sin(z)*.
m 5] 6 7 8 9 10 11 12 13
pm || 5.853 | 5.929 | 5.965 | 5.983 | 5.992 | 5.996 | 5.999 | 5.999 | 6
Table 8
1D; B8 ] = 8%
m 5 6 T 8 10 11 12 13
pm || 6.846 | 6.922 | 6.961 | 6.980 | 6.990 | 6.995 | 6.998 | 6.999 | 6.999
Table 9 i
1D, k = 2, multiple root case: a(z) = z3|z — .3|2.
m ] 6 7 8 9 10 11 12 13
Pm || 5.01 | 2982 | 2.278 | 3.574 | 7.025 | 1.811 | 1.779 | 3.52 | 6.947
Table 10
B _ . 3 ; %2 L\4
1D, k = 2, multiple root case : a(z) = (9: — ﬁ) (a: - "ﬁ) .
m 5 6 7 8 9 10 11 12 13
Pm || 7.264 | 4.516 | 4.601 | 4.316 | 5.192 | 4.719 | 6.447 | 3.725 | 4.876
Table 11
1D, k = 2 multiple root case: a{z) = (z — .5)%x3.
m 3 6 7 8 9 10 11 12 13
Pm || 3.89 | 3.944 | 3.972 | 3.986 | 3.993 | 3.997 | 3.998 | 3.999 | 4
at the end of Section 6.
Table 12
2D case: a(z,y) = b(z,y) =z +vy
m 3 4 6 7 8
Pm || 1.826 | 1.911 | 1.956 | 1.978 | 1.989 | 1.995
Table 13
2D case: a(z,y) = 2% + 42, b(z,v) = (z +9)?
m 3 4 5 6 7 8
pm || 1.921 | 1.967 | 1.990 | 2.001 | 2.005 | 2.008
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Table 14
2D case: a(x,y) = 2° + ¢4, b(z,y) = x5 + ¢°

m 3 4 5 6 7 8
Pm || 2.885 | 2.949 | 2.979 | 2.992 | 2.997 | 2.999

Table 15
2D Case: a(z,y) = |z —y°, blz,p) =z — P+ |y - %

m 3 -4 3 6 7 8
pm || 2.757 | 2.871 | 2.934 | 2.967 | 2.983 | 2.991

8 Conclusions

In this paper we have studied the conditioning of semi-elliptic differential
problems (the elliptic case is plain thanks to monotonicity arguments). As
a main tool we have employed the notion of positivity in three different as-
pects: definite positivity, operator positivity (especially in Subsection 2.2), and
component-wise positivity (especially in Section 4). Our main result is that the
two sources of ill-conditioning, the low frequencies coming from the constant
coefficient Laplacian, and the space spanned by few canonical vectors related
to the position of the zero of a(z), do not interfere; conversely, we numerically
observe a bad interference, a kind of resonance, in presence of distinct zeros in
the coefficient a(z). Therefore, when a unique zero is considered, there is only
a superposition effect so that the size of the degenerating subspace, i.e. that
related to small eigenvalues, becomes larger, but the order of ill-conditioning
is not worse than that of the two factors separately. As a consequence, both
for designing multigrid methods or preconditioners, we can treat the two ill-
conditioned spaces separately and this of course implies a simplification in
the practical programming and in the theoretical convergence analysis (see
e.g. [21,24,26,4])). Finally, there is still the open problem of completing our
study in three directions: we would like to identify the constants hidden in
the equivalence relations of the main Theorems 4.4 and 5.1, we would like to
add more terms if the asymptotic expansion of the condition number of A4,
and, more important, we would like to include the more challenging multidi-
mensional setting. Indeed, as a final remark, we stress that partial results are
easily available, by repeating e.g. the same derivations as in Subsection 2.2 in
a multilevel setting: however a complete analysis is still missing.
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